

Accessing Isospin Symmetry Breaking Effects in Superallowed Beta Decays Chien-Yeah Seng Rheinische Friedrich-Wilhelms-Universität Bonn and University of Washington and **FRIB** Theory Alliance cseng@hiskp.uni-bonn.de Low Energy Community Meeting 2022, Argonne National Laboratory 9 August, 2022

Precision Tests of SM through the first-row CKM unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Precision Tests of SM through the first-row CKM unitarity

A new concept: Electroweak nuclear radii constrain the isospin breaking correction to V_{ud}

Seng and Gorchtein, 2208.03037

ISB corrections in superallowed nuclear beta decays

Superallowed beta decays of T=1, J^p=0⁺ nuclei provide the best measurement of V_{ud}

$$|V_{ud}|^2 \mathcal{F}t \left(1 + \Delta_R^V\right) = 2984.43 \,\mathrm{s}$$

	$ V_{ud} $
Superallowed nuclear decays $(0^+ \rightarrow 0^+)$	0.97373(31)
Free n decay	0.97377(90)
Mirror nuclei decays	0.9739(10)
Pion semileptonic decay (π_{e3})	0.9740(28)

Assuming **isospin symmetry**, the tree-level nuclear matrix element is completely fixed:

$$M_F^0 = \langle f_0 | \hat{\tau}_+ | i_0 \rangle = \sqrt{2}$$

"bare Fermi matrix element"

Isospin symmetry breaking (ISB) correction alters the Fermi matrix element:

$$|M_F|^2 = |\langle f | \hat{\tau}_+ | i \rangle|^2 = |M_F^0|^2 (1 - \delta_{\rm C})$$

Caused by **isospin mixing** of nuclear states, predominantly due to Coulomb repulsion between protons

Crucial in obtaining a nucleus-independent Ft-value from the nucleus-dependent ft-values:

$$|V_{ud}|^2 \mathcal{F}t (1 + \Delta_R^V) = 2984.43 \,\mathrm{s}$$
$$\mathcal{F}t = ft (1 + \delta_R') (1 + \delta_{\mathrm{NS}} - \delta_{\mathrm{C}})$$

ISB corrections in superallowed nuclear beta decays

- Computing δ_c: Classic problem over
 6 decades! MacDonald, 1958 Phys.Rev
- Current input adopted in global analysis: Shell model + Woods-Saxon (WS) potential by Hardy and Towner
- Successful in aligning Ft values of different superallowed transitions

Hardy and Towner, 2020 PRC

Transitions	$\delta_{ m C}$ (%)							
	WS	DFT	$_{\rm HF}$	RPA	Micro			
$^{26m}\mathrm{Al} \rightarrow ^{26}\mathrm{Mg}$	0.310	0.329	0.30	0.139	0.08			
$^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$	0.613	0.75	0.57	0.234	0.13			
$^{38m}\mathrm{K}\rightarrow ^{38}\!\mathrm{Ar}$	0.628	1.7	0.59	0.278	0.15			
$^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$	0.690	0.77	0.42	0.333	0.18			
$^{46}\mathrm{V} \rightarrow ^{46}\mathrm{Ti}$	0.620	0.563	0.38	/	0.21			
$^{50}\mathrm{Mn} \rightarrow ^{50}\mathrm{Cr}$	0.660	0.476	0.35	/	0.24			
$^{54}\mathrm{Co} \rightarrow ^{54}\mathrm{Fe}$	0.770	0.586	0.44	0.319	0.28			

(Selected results)

Caveats:

- Significant model dependence. Disagreement with Hartree-Fock, DFT, RPA...
- Theory inconsistencies, e.g. not using the correct isospin operator Miller and Schwenk, 2008 PRC, 2009 PRC; Condren and Miller, 2201.10651
- Results solely from nuclear models, no direct experimental constraint!
- Ab-initio calculations still in preliminary stages

Caurier et al., 2002 PRC; Martin et al., 2021 PRC Vibrant experimental programs of the **neutron skin measurements** with **parity-violating elastic scattering (PVES)** (for EoS, nuclear astrophysics)

$$S_n = R_n - R_p$$

PREX, CREX, P2, MREX...

$$R_{p/n,\phi} = \sqrt{\frac{1}{X} \langle \phi | \sum_{i=1}^{A} r_i^2 \left(\frac{1}{2} \mp \hat{T}_z(i)\right) |\phi\rangle} \quad \text{X=Z or N}$$

 Ideally, measuring the neutron skin of the N=Z state in the isotriplet provides a clean probe of ISB effect:

$$\langle 1, 0 | \hat{O}_0^1 | 1, 0 \rangle = 0$$

 Unfortunately, the N=Z state is unstable, rendering fix-target scattering experiments impossible

The Tz=+1 state is always the most stable!

However, at $N \neq Z$, disentangling the ISB and symmetry energy contribution 9 to the neutron skin is non-trivial

"Isovector monopole operator":

$$\vec{M}^{(1)} = \sum_{i=1}^{A} r_i^2 \vec{\hat{T}}(i)$$

Let's consider $(Tz)_i = 0$, $(Tz)_f = +1$.

Measurement (1): t-dependence in beta decay

Beta decay form factors:

$$\langle f(p_f) | J_W^{\lambda \dagger}(0) | i(p_i) \rangle = f_+(t) (p_i + p_f)^{\lambda} + f_-(t) (p_i - p_f)^{\lambda}$$

Recoil effects probe the t-dependence, give the off-diagonal matrix element of the isovector monopole operator:

$$\bar{f}_{+}(t) = 1 - \frac{t}{6} \frac{\langle f | M_{+1}^{(1)} | i \rangle}{\sqrt{2}M_F} + \mathcal{O}(t^2)$$

Existing recoil expt: TRIUMF, ISOLDE (CERN) etc. Future expt at FRIB?

"Isovector monopole operator":

$$\vec{M}^{(1)} = \sum_{i=1}^{A} r_i^2 \vec{\hat{T}}(i)$$

Let's consider $(Tz)_i = 0$, $(Tz)_f = +1$.

Measurement (2): p/n distribution radius at (Tz),=+1

For stable daughter nucleus, fixed-target scattering can be performed to measure R_p and R_n respectively (deduced from charge and weak radii)

Can combine to get another matrix element of the isovector monopole operator:

$$\langle f | M_0^{(1)} | f \rangle = \langle f | \sum_{i=1}^A r_i^2 \hat{T}_z(i) | f \rangle = \frac{N}{2} R_{n,f}^2 - \frac{Z}{2} R_{p,f}^2$$

PREX, CREX (JLab), P2, MREX (Mainz)...

"Isovector monopole operator":

$$\vec{M}^{(1)} = \sum_{i=1}^{A} r_i^2 \vec{\hat{T}}(i)$$

Let's consider $(Tz)_i = 0$, $(Tz)_f = +1$.

Combined experimental observable

If isospin symmetry is exact, the two matrix elements are equal and opposite:

$$\langle f_0 | M_{+1}^{(1)} | i_0 \rangle = - \langle f_0 | M_0^{(1)} | f_0 \rangle$$

Therefore, the combined experimental observable:

$$\Delta M_A^{(1)} \equiv \langle f | M_{+1}^{(1)} | i \rangle + \langle f | M_0^{(1)} | f \rangle$$

provides a clean probe of ISB. Deviation from zero signifies isospin mixing 12

"Isovector monopole operator":

$$\vec{M}^{(1)} = \sum_{i=1}^{A} r_i^2 \vec{\hat{T}}(i)$$

Let's consider $(Tz)_i = 0$, $(Tz)_f = +1$.

Measurement (3): Charge radii across the isotriplet

Nuclear charge radii are measurable for both stable and unstable nuclei (through atomic spectroscopy)

Assuming $R_{ch} \approx R_{p}$, the following observable is also a clean probe of ISB:

$$\Delta M_B^{(1)} \equiv \frac{1}{2} \left(Z_1 R_{p,1}^2 + Z_{-1} R_{p,-1}^2 \right) - Z_0 R_{p,0}^2$$

Possible future measurements: BECOLA at FRIB

Connection to the ISB correction to $M_{_{\rm F}}$

They share identical reduced matrix elements in the T=0,1,2 channels!

Benefits to theorists: Methodologies capable to compute δ_c can also compute $\Delta M^{(1)}$; the latter can be directly compared to experiment! Further modeling invoking isovector monopole dominance:

Auerbach, 1983 Phys.Rept

$$\sum_{a} \frac{|\langle a; T || V_C^{(1)} || g; 1 \rangle|^2}{(E_{a,T} - E_{g,1})^n} \to \frac{|\langle M; T || V_C^{(1)} || g; 1 \rangle|^2}{(E_{M,T} - E_{g,1})^n}$$

Assuming degenerate reduced matrix elements: $\langle M; T || V_C^{(1)} || g; 1 \rangle \equiv u$ (correction ~ |N-Z|/A)

Energy splitting:
$$E_{M,T} - E_{g,1} = \xi \omega [1 + (T^2 + T - 4)\kappa/2]$$

Reduced matrix elements drop out, leading to a direct proportionality:

$$\delta_{\rm C} \approx -\frac{Ze^2}{8\pi R_C^3} \frac{\kappa(4-13\kappa+12\kappa^2-\kappa^3)}{(\kappa^2-4\kappa+2)(1-2\kappa)(1-\kappa^2)} \frac{1}{\xi\omega} \Delta M_A^{(1)}$$

$$\approx -\frac{Ze^2}{8\pi R_C^3} \frac{(4-13\kappa+12\kappa^2-\kappa^3)}{2\kappa(1-2\kappa)(1-\kappa^2)} \frac{1}{\xi\omega} \Delta M_B^{(1)}$$

Proportionality constants bearing residual model dependence

Targeted Experimental Precision

How precise should experiments be to start probing isospin mixing effects?

The simple proportionality relation + δ_c available on market provide useful guidance on the targeted experimental precision!

Transitions			$\delta_{ m C}$	(%)				$\Delta M_A^{(1)}$	(fm^2)				$\frac{\Delta M_A^{(1)}}{AR^2/4}$	(%)		
	WS	DFT	$_{\rm HF}$	RPA	Micro	WS	DFT	$_{\mathrm{HF}}$	RPA	Micro	WS	DFT	HF	RPA	Micro	
$\boxed{^{26m}\mathrm{Al} \rightarrow ^{26}}\mathrm{Mg}$	0.310	0.329	0.30	0.139	0.08	-2.2	-2.3	-2.1	-1.0	-0.6	3.2	3.3	3.0	1.4	0.8	
$^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$	0.613	0.75	0.57	0.234	0.13	-5.0	-6.1	-4.6	-1.9	-1.0	4.6	5.6	4.3	1.8	1.0	
$^{38m}\mathrm{K}\rightarrow ^{38}\!\mathrm{Ar}$	0.628	1.7	0.59	0.278	0.15	-5.4	-14.6	-5.1	-2.4	-1.3	4.2	11.2	3.9	1.8	1.0	
$^{42}\mathrm{Sc} \rightarrow ^{42}\mathrm{Ca}$	0.690	0.77	0.42	0.333	0.18	-6.2	-6.9	-3.8	-3.0	-1.6	4.0	4.5	2.5	2.0	1.1	
$^{46}\mathrm{V} \rightarrow ^{46}\mathrm{Ti}$	0.620	0.563	0.38	/	0.21	-5.8	-5.3	-3.6	/	-2.0	3.3	3.0	2.0	/	1.1	
$^{50}\mathrm{Mn} \rightarrow ^{50}\mathrm{Cr}$	0.660	0.476	0.35	/	0.24	-6.4	-4.6	-3.4	/	-2.4	3.1	2.3	1.7	/	1.2	
$^{54}\mathrm{Co}\rightarrow ^{54}\!\!\mathrm{Fe}$	0.770	0.586	0.44	0.319	0.28	-7.8	-5.9	-4.4	-3.2	-2.8	3.3	2.5	1.9	1.4	1.2	
		$δ_{c}$ fro	m di	iffere	nt			Expe	cted		Targeted relative					
	models						size of ΔM ⁽¹⁾					precision of				
									R_{n}^{2}, R_{n}^{2}				16			
$\Delta M_A^{(1)}$ sensitivity enhanced by $1/\kappa$										mea	asurem	nent				

Targeted Experimental Precision

How precise should experiments be to start probing isospin mixing effects?

The simple proportionality relation + δ_c available on market provide useful guidance on the targeted experimental precision!

Transitions			$\Delta M_B^{(1)}$	(fm^2)				$\frac{\Delta M_B^{(1)}}{AR^2/2}$	(%)	
	WS	DFT	HF	RPA	Micro	WS	DFT	HF	RPA	Micro
$^{26m}\mathrm{Al} \rightarrow ^{26}\mathrm{Mg}$	-0.12	-0.12	-0.11	-0.05	-0.03	0.08	0.09	0.08	0.04	0.02
$^{34}\mathrm{Cl} \rightarrow ^{34}\mathrm{S}$	-0.17	-0.21	-0.16	-0.06	-0.04	0.08	0.10	0.07	0.03	0.02
$^{38m}\mathrm{K}\rightarrow ^{38}\!\!\mathrm{Ar}$	-0.15	-0.42	-0.15	-0.07	-0.04	0.06	0.16	0.06	0.03	0.01
$^{42}\mathrm{Sc}\rightarrow ^{42}\!\mathrm{Ca}$	-0.15	-0.17	-0.09	-0.07	-0.04	0.05	0.06	0.03	0.02	0.01
${\rm ^{46}V} \rightarrow {\rm ^{46}Ti}$	-0.12	-0.11	-0.08	/	-0.04	0.03	0.03	0.02	/	0.01
$^{50}\mathrm{Mn}\rightarrow ^{50}\mathrm{Cr}$	-0.12	-0.09	-0.06	/	-0.04	0.03	0.02	0.02	/	0.01
$^{54}\mathrm{Co}\rightarrow ^{54}\!\mathrm{Fe}$	-0.13	-0.10	-0.07	-0.05	-0.05	0.03	0.02	0.02	0.01	0.01
	\subseteq									
		E size	× xpector e of ∆l	ed M _B ⁽¹⁾		Targeted relative precis R _p ² measurement				

 $\Delta M_{_{\rm B}}{}^{(1)}$ sensitivity suppressed by κ , but partial results already exists

Anticipated Synergies

Precision tests of SM; Search for BSM physics

Summary

- Isospin breaking correction δ_c is an important SM theory input for the test of first-row CKM unitarity. Current determination suffers from theoretical inconsistencies, model-dependence, and is short of direct experimental constraint.
- We propose a new set of experimental observables $\Delta M_A^{(1)}$, $\Delta M_B^{(1)}$ from the measurement of electroweak nuclear radii across the isotriplet, as a clean probe of isospin mixing effects.
- We show that $\Delta M_A^{(1)}$, $\Delta M_B^{(1)}$ probe the same physics as δ_c , thus serves as a strong constraint to the latter. They also provide useful consistency checks to theory calculations.
- Existing models indicate that measurements of R_p^2 , R_n^2 to ~1% may start to probe isospin mixing effects.
- The new idea may motivate synergies between theory and experimental communities in physics of rare isotopes, electron scattering and nuclear astrophysics.